skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tombola, Francesco"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We describe the concept and roadmap of an engineered electronic nose with specificity towards analytes that differ by as little as one carbon atom, and sensitivity of being able to electrically register a single molecule of analyte. The analyte could be anything that natural noses can detect, e.g. trinitrotoluene (TNT), cocaine, aromatics, volatile organic compounds etc. The strategy envisioned is to genetically engineer a fused olfactory odorant receptor (odorant receptor (OR), a membrane-bound G-protein coupled receptor (GPCR) with high selectivity) to an ion channel protein, which opens in response to binding of the ligand to the OR. The lipid bilayer supporting the fused sensing protein would be intimately attached to a nanowire or nanotube network (either via a covalent tether or a non-covalent physisorption process), which would electrically detect the opening of the ion channel, and hence the binding of a single ligand to a single OR protein domain. Three man-made technological advances: (1) fused GPCR to ion channel protein, (2) nanowire sensing of single ion channel activity, and (3) lipid bilayer to nanotube/nanowire tethering chemistry and on natural technology (sensitivity and selectivity of OR domains to specific analytes) each have been demonstrated and/or studied independently. The combination of these three technological advances and the result of millions of years of evolution of OR proteins would enable the goal of single molecule sensing with specificity towards analytes that differ by as little as one carbon atom. This is both a review of the past and a vision of the future. 
    more » « less